Roll	II No.		Total No. of Pages : 02	
Tota	tal No. of Questions : 18			
	B.Tech.(EE) (2020 Ba ELECTROMAGN	atch) IETIC	(Sem.–3) FIELDS	
Subject Code : BTEE-304-20				
	M.Code :	: 76384	l i i i i i i i i i i i i i i i i i i i	
Time : 3 Hrs.		Max. Marks : 60		
INST	TRUCTIONS TO CANDIDATES :			
1.	SECTION-A is COMPULSORY consisting each.	of TEN	questions carrying TWO marks	
2.	SECTION-B contains FIVE questions can have to attempt any FOUR questions.	rying F	IVE marks each and students	
3.	SECTION-C contains THREE questions of have to attempt any TWO questions.	carrying	TEN marks each and students	

SECTION-A

Write briefly :

- 1. Obtain the expression for Laplacian of a scalar field for cylindrical coordinate system.
- State the significance of displacement current in the context of Maxwell's equations. 2.
- If a lightning stroke with corrent 50 kA occurs 100 m away from your house, calculate 3. the magnetic flux density at your house due to the lightning stroke.
- Show that in a good conductor, skin depth is always much shorter than its wavelength. 4.
- 5. Find $\nabla \bigotimes A \bigotimes$
- 6. Infinite line x = 3, z = 4 carries 16 nC/m and is located in free space above the conducting plane z = 0. Use method of images to obtain the induced surface charge density on the conducting plane at (5, -6, 0).
- 7. State Gauss's law.
- 8. Express Coulomb's law in vector form.
- 9. Find the equivalent inductance of two coils connected in series. Assume the fluxes to be opposing each other.
- 10. Distinguish between transformer and motional emf.

1 M-76384

(S2)-641

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

11. If $r = x \dot{a}_x + y \dot{a}_y + z \dot{a}_z$ is the position vector of (x, y, z), $r = | \stackrel{\downarrow}{r} |$ and 'n' is an integer, evaluate-

a)
$$\nabla (r^n r)$$
 b) $\nabla^2 (\ln r)$

- 12. Find D at P (6, 8, -10) because of -
 - (i) Point charge of 50 mC at origin
 - (ii) A uniform line charge X = 30 \mathcal{L}/m on z-axis.
 - (iii) A uniform surface charge density $\aleph = 27.2$ \Re / m^2 on a plane x = 12.
- 13. Prove that :

$$\begin{array}{c} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \\ (A \quad B). \ (C \quad D) = \begin{array}{c} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \\ A.C \quad B.C \\ \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \mathbf{\downarrow} \\ \mathbf{\textcircled{G}} A \ D \quad B \ D \end{array} \right|$$

- 14. Derive Biot Savart's law and Ampere's Circuital law from the concept of magnetic vector potential.
- 15. Obtain the intrinsic impedance for an EM wave propagating through perfect conductor.

- 16. State Divergence theorem and verify the same for the vector field $r^2 \hat{a}_r + r \sin^- \cos \hat{a}_r$ over the surface of a quarter of a hemisphere defined by 0 < r < 3, $0 < < \frac{\cancel{3}}{2}$, $0 < \frac{\cancel{3}}{2}$.
- 17 If $A=2a_x + 4a_y$ and $B=6a_y 4a_z$. Find the smaller angle between them using cross product. Verify it using dot product. Apply triangle law of vector addition to establish Coulomb's law of force between two-point charges.
- 18. If F = 2, $z a \times + 3z$ in $a \to 4 \times cos a_z$ verify Stoke's theorem for the open surface defined by $z = 1, 0 < \times < 2, 0 < \pm 45^\circ$. What is a time harmonic field? Derive Ampere's circuital law for time harmonic fields.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76384

(S2)-641

Download all NOTES and PAPERS at StudentSuvidha.com